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 PERCOLATION OF HARD DISKS

 D. ARISTOFF,* University of Minnesota

 Abstract

 Random arrangements of points in the plane, interacting only through a simple hard-
 core exclusion, are considered. An intensity parameter controls the average density
 of arrangements, in analogy with the Poisson point process. It is proved that, at high
 intensity, an infinite connected cluster of excluded volume appears almost surely.

 Keywords: Percolation; Poisson point process; Gibbs measure; grand canonical Gibbs
 distribution; statistical mechanics; hard sphere; hard disk; excluded volume; gas/liquid
 transition; phase transition
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 1. Introduction

 Consider a random arrangement of points in the plane. Suppose that each pair of points at a
 distance less than L from one another are joined by an edge, and let G be the resulting graph.
 An important question in percolation theory is: does G have an infinite connected component?

 A key problem in answering this question is in defining what is meant by a random arrange-
 ment of points. A standard model is the Poisson point process , in which the probability that a
 (Borei) set A contains k points of the random arrangement is Poisson distributed with parameter
 X' A I, where | • | is the Lebesgue measure and X is the intensity of the process. Events in disjoint

 sets are independent; see [3]. Here X is the (average) density of arrangements of points. It
 can be shown that if X is greater than some critical value Xc then G has an infinite connected
 component with probability 1; see [10]. (Of course, A.c depends on the connection distance L.)

 The Poisson point process is closely related to the (grand canonical) Gibbs distribution of
 statistical mechanics (with particle interaction set to 0 and momentum variables integrated out)
 in the sense that they give nearly identical probabilistic descriptions of arrangements of points
 in large finite subsets of the plane. The Gibbs distributions, however, also allow for interactions

 among the points. Suppose that the points interact through a simple exclusion of radius 2 r > 0.
 (That is, each pair of points is separated by a distance of at least 2 r.) Each arrangement of
 points can then be imagined as a collection of hard-core (i.e. nonoverlapping) disks of radius r.

 There is a Gibbs distribution on arrangements of points with exclusion radius 2 r in finite
 subsets of the plane which, like the Poisson process, gives equal probabilistic weight to every
 arrangement of the same density. Furthermore, a probability measure can be defined on such
 arrangements in the whole plane such that, in a certain sense, its restriction to finite subsets has

 the Gibbs distribution. This probability measure, called an (infinite volume) Gibbs measure ,
 has been extensively studied (see, e.g. [5], [8], and [12]).

 It is natural to ask whether G has an infinite connected component when the points in G
 are sampled from a Gibbs measure with an exclusion of radius 2r. If r <& L, one can argue
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 236 D. ARISTOFF

 that the exclusion is insignificant and that, by analogy with the Poisson process, there is some
 critical activity , zc> such that G almost surely has an infinite connected component for z > zc-
 (See Section 7 of [2] for a sketch of a proof in this direction.) Here the activity z is a parameter
 analogous to the intensity of the Poisson process.
 If r and L are close, the qualitative relationship with the Poisson point process is less
 clear, at least as it pertains to percolation. In particular, let L < 4r. Then the percolation
 question is closely related to the excluded volume. (The excluded volume corresponding to
 an arrangement of points is the set of all points which, due to the exclusion radius, cannot be
 added to the arrangement.) If G has an infinite component for such L, then there is an infinite
 connected region of excluded volume. The latter event has been associated with the gas/liquid
 phase transition in equilibrium statistical mechanics; see [7] and [13]. Below it is proved that,
 given L > 3r, with points distributed under a Gibbs measure with an exclusion of radius 2 r, G
 has an infinite connected component almost surely whenever the activity z is sufficiently large.

 Little is known about qualitative properties of typical samples from a Gibbs measure (with
 exclusion) when z is large; even simulations have been inconclusive, although a recent large-
 scale study [1] may settle some questions. It is expected (but not proven) that when z is large,
 typical arrangements exhibit long-range orientational order; see [1]. On the other hand, it
 has been shown that there can be no long-range positional order at any z (see [11]; this is an
 extension of the famous Mermin-Wagner theorem to the case of hard-core interactions). The
 absence of long-range positional order makes the percolation question even more pertinent.

 2. Notation, probability measure, and sketch of proof

 Fix r > 0, and define

 Q = {co c R2 : 'x - y' > 2r for all x ^ y e co] C ¿P(R2).

 In particular, 0 e fì. (Here ¿P(R2) is the set of subsets of R2.) Let T be the topology on Q
 generated by the subbasis of sets of the form {co e Q: #(<wfl ř/) =#(a>fl£) = m] for compact
 sets K c R2, open sets U C K, and positive integers m. Here #f is the number of elements in
 the set Ç. Let F be the o -algebra of Borei sets with respect to the topology 3" ; it is known that

 y is generated by sets of the form {a> e Q : #(co fi B) = m] for bounded Borei sets B c R2
 and nonnegative integers m; see [12]. Let An = [- n, n ]2 C R2, and, given A e define

 An,N = K*i> • • -,xn)'- >,XJV} € A, {xi, . . .,xjv} C A„} C (R2)n,

 1 f 00
 Ln,N(A) = ■- 1 / f djci • • • dxjy, Ln,z(A) = ^ ] z Ln^(A).

 • J A„.n n=1

 For Ç e Q and n e N, define

 Qn ( = {(o € £2: (Û C A„, o>U(£ ' A„) € £2).

 It is easily seen that e T . For Ç 6 ß, z e M, and n € N, define the grand canonical
 Gibbs distribution G„,Ziç with boundary condition Ç on A„ by

 /- / 1' Lnz(A D £2n { * )
 Gn,z,ç(A) /- / 1' = - - ,0 { * for A ef.

 L>n,z'^n¿) ,0

 The Gibbs distribution Gn¡z¿ is a probability measure on (£2, T) with support in
 A measure ļiz on (£2, £") is called a Gibbs measure if ßz(£l) = 1 and, for all n € N and
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 Percolation of hard disks 237

 all measurable functions /: Q -> [0, oo),

 f f (ü))ßz(dco) = Í ßz( d£) í GntZ^(dco)f (coö (Ç 'An)).
 J Çl J Çí Jçinç

 It is well known that ¡xz exists for every z. (For a proof of existence, see [12].) However, ßz
 may be nonunique. When ßz is referred to below, it is assumed that ¡xz is an arbitrary Gibbs
 measure, unless otherwise specified.
 For s > 0, P, Q C R2, and x e R2, define

 Bs(x) = [y € R2 : |* - y' < s },

 d(P, Q) = inf{|p - q': p e P,q e Q),

 P - x = [p - x : p € P},

 and call P infinite if, for every n , P is not a subset of A„.
 Let L > 3 r. The main result of this paper, Theorem 3, states that, for sufficiently large z,

 Ujc€w Bl/i(x) has an infinite connected component ļiz- almost surely for all Gibbs mea-
 sures ¡iz . As a preliminary step the following is shown in Theorem 2: let Amf be the event

 that UjtGû, Bl/iW has an infinite connected component, W , such that d( 0, W) < L/2. Then
 limz_>oo ßz(A inf) = 1 uniformly in all Gibbs measures ßz.

 Here an outline of the proof of Theorem 2 is sketched. Write R = S + 3r/2 with S > 0,
 with R chosen to be slightly smaller than L/2. Let ^ : R2 - ► (sZ)2 be a discretization of

 space, with e much smaller than r and 8 . Let co € fì, and suppose that [Jxect) Br(V(x)) has a
 finite connected component W. The boundary of W is comprised of a number of closed curves;

 let y be the one which encloses a region Wy containing all the others, and assume that y is
 comprised of exactly K arcs. Let Ay be the set of all co e Q for which the curve y arises as
 above. It can be shown that there is a vector wo € R2 of magnitude approximately r and a map

 (/> : Ay Q defined by (¡>{a )) = ({co fi WY) - mo) U (co ' WY) with the following properties:
 ^w,z(0(^)) = Ln,z(A) for all measurable A c Ay, and there exist x' , *2, . . . , xm e R2, with
 M = fcATļ and c a positive constant (depending only on 8 and r, and not on y), such that, for
 all co e Ay and / /; € {1,2,..., M},

 8
 d(xi,cļ)(co)) > - + 2 r and |jt/ - Xj ' > 8 + 2r.

 Then, with Ay = {<t>(a>) U {yi , y2, ■ . . , y'i) : co e Ay, y¡ e Bs/2(xj)},

 MÍ) V 4 /
 provided n is large enough. It follows that ßz(Ay) < (7t82z/4)~m .

 Let be the event that [Jxeù) Br(V(x)) has an infinite connected component W such
 that d( 0, W) < r/2. Consider only those finite connected components W of Ujc<eû> ^/?(^C*))
 such that d( 0, W) < r/2. A counting argument shows that the number of curves y with K arcs
 corresponding to such W is bounded above by

 ^(AT + l)//^2^/J^2(/f~1>
 where H depends only on 8 and r. So the ßz -probability that there is a finite connected
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 238 D. ARISTOFF

 component IV of U*€<w BrWW) such that d( 0, IV) < r/2 is less than

 K- 1

 This summation approaches 0 as z -* oo. A simpler version of the above arguments shows that

 the ļiz -probability that d( 0, W) > r/2 for all connected components W of Uxeco Br(W(x))
 also approaches 0 as z oo. It follows that limz_>oo ßz(A^nf) = 1. The continuous space
 corollary is the statement limz_>oo ßz(A'nf) = 1, which is deduced by an appropriate choice
 of R ; since all of the above estimates apply to arbitrary Gibbs measures ¡xZi the convergence is
 uniform in ļiz.

 3. Discretization and contours

 Throughout R , 8 , and s are fixed with R = 8- 1- 3r/2, 8 e (0, r/2), and s e (0, 8/2). Define
 : R2 -> (sZ)2 as follows. For nt m e Z, if

 (x, y) € em + 0 x ļ^en - en + 0
 then set

 ^(jc, y ) = ( em , £7i).

 Note that |^(jc) - x' < e for all x e R2. Furthermore, *I> is Borei measurable in the sense that
 ty-1 (P) is a Borei set for any P c (sZ)2. (The dependence of ^ on e will be suppressed.)

 Letto € Ū. The connected components of Ux€ù) Br(V(x)) naturally partition co into subsets
 co' C co ; each cor consists exactly of all the points x e co such that 4>(x) belongs to a given

 connected component of Ujtew BrWW)- The subsets cof will be called components of co.
 A component cof of co is said to be finite if co' c An for some n. For each finite component cor of

 co € Q, consider the set = (Jjcea/ ft+2r(^(*))- Since 8 + 2r > Ry is connected.
 (It will also be assumed throughout that r, 8 e Q and that e is transcendental. This assumption
 implies that if two disks in Wœtù/ intersect then they overlap.) Consider now the boundary
 dW^a/ of WœtCy. By the above, d is a union of (images of) simple closed curves, one
 of which encloses a region containing all the others. Define y = YwM C R2 to be the latter
 curve; y will be called a contour of co. A contour y is (the image of) a simple closed curve
 comprised of circle arcs. The total number of circle arcs in y is called the size of the contour,
 see Figure 1 . The region enclosed by y will be denoted by Wy . It is emphasized that a contour
 Y - Y(oM is defined only when cof is a finite component of some co e Q.

 Lemma 1. There exists c > 0 such that the following holds. Let y be any contour of size
 K > 0, and let Ay be the ( nonempty ) set of all co e Q such that y = y^^ for some finite
 component co' of co. Then Ay € T . Choose n such that y C An. There is a map <p: Ay - » Í2
 and x' , JC2, . . . , xm € R2, with M = 'cK' such that

 (i) LnìZ(A ) = Ln%z{4>{A)) forali z and F -measurable A C Ay;

 (ii) I Xi - Xj' > 8 + 2r forali i ^ j e { 1,2,..., M};

 (iii) d(x¡9 <t>(co)) > 8/2 + 2 r for all i €{1,2,..., M] and all co € Ay.

 Proof. To see that Ay € .F, note that Ay can be written as a finite intersection of sets of the
 form {co € £2: #(<*> fi ({*})) = £}, where x € (sZ)2 and t € {0, 1}.
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 /

 (^'ô + 2r

 } + 2r • K
 V • ' 1=3 ' )

 V ' • 1=3 ' ' ) )
 Figure 1: The outer curve is a contour y = yw w> of size 13. All the points pictured belong to 4>(c</).

 a ^ ^ !

 Figure 2: A contour y^^ with the arc a . Here 0a is the outward normal angle with respect to the midpoint
 of a and x e ^(û/).

 For each circle arc a of y, let 6a e [0, 2 n) be the outward normal angle with respect to the
 midpoint of the arc (see Figure 2). Choose 0 < a < 8/(8 + 2 r) so that a = 2 n/n for some
 ne N. By the pigeonhole principle, there is a subinterval / = [v, v + a) C [0, 2n) such that
 '(2Tc)~xaK'' of the angles 0a belong to /. Fix 0o € /, and let

 "0 = + rj cos 00, Q + sin
 be the vector in the direction of 0o with magnitude 8/2 + r. Define 0 : ¿P(R2) - ► ¿P(R2) by

 </>(X) = ((X H Wy) - M0) U (X ' Wy).

 It will be shown below that (¡>(Ay) c
 Let co e Ay be arbitrary, and let œ> be the unique component of co such that y = Yurf-

 Assume that x e co'WY. Then d(ty(x), ^(a/)) > 28 + 3 r, and so

 </(*(*), U Bi+2r(*(y))) > S + r.
 yeco' '
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 Xa,a'

 ļ 5 + 2r'ļ '
 X|X - 0 /** **

 /28 + Zr

 X

 Figure 3: Pictured are x' , xp. € ^(o/) C Wy and x e O Wy), but x £ ^(c or ). For such jc,
 d(x, y) > '/5 r2 + Sr 8 + 382. This can be seen in the above picture, in which the distance from jc to y

 is minimized by placing x' and X2 as far apart as possible.

 It follows that úř(*I/(jt), y) > 8 + r, and so d(x, y) > 8/2 -I- r. Now assume that x e coDWy.
 If x € œ> then d(V(x), y) > 8 + 2 r, and so ¿/(jc, y) > 5/2 + 2 r. If x ^ a/ then

 *(*) * (J B2Mr(*(y))
 yeco'

 and a simple computation shows that </(*!*(*), y) > V 5r2 + 8 rS + 3 82 > 8 + 2r, and so
 d( x, y) > 8/2 + 2 r. (See Figure 3.)

 Now let A c A Y with A e T , and define

 Aia = {<o D Wy : w € A}, A0Ut = {<ô'HV:û>€i4}.

 Let ft>m € A1" and coout € Aout. By the preceding paragraph,

 d(u>oM, y) > ^ + r, d(co'n, y) > ^ + 2 r.

 Let x € com and y € wout , and let z be any point on the intersection of y with the line segment xý.

 711611 8 8
 'x - y I = 'x - z| + 'y - z' > - + 2r + - + r = S + 3r.

 Since 'uo' = 8/2 + r, it follows that

 I <t>(x) - 4>(y)' = |(* - mo) - y' > ^ + 2r.

 By the preceding statements,

 d((jn, (0OM) > 8 + 3r > 2r, d(<f>(win), <¡>(<üooV)) > -+2r>2r.

 In particular, this shows that <p(A) c Í2, and so <f>(Ay) C £2. Also, note that d(i win, y) >
 8/2 + 2r and y C A„ together imply that </>(«'") = <win - ko C A«. Combining the above
 statements gives

 L„>W(A) = L„,A,(Am)Ln,w(A0Ut)

 = L„,N(Aia-uo)L„,N(AoM)

 = L„,w(^(Ain))L„,w(^(Aout))
 = L„M<HA)).
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 s' S + r

 / / ' ma-uaS X ' ' ' / ' ma-uaS ' '
 I 28 + 3r ' '

 I

 Figure 4: The midpoint ma of the arc a with corresponding normal vector ua . Here xa € ^(a/). No
 points in (o> ' ) can be inside the large circle. The magnitude of ua is r + 8/2 , and so the ¿/-distance

 between ma - ua and the large circle is 38/2 + 2r.

 Since #(o> H A„) = #(0(o>) n A„) for each co € it follows that Ln,z(A) = LrtiZ(0(A)).
 This proves (i).
 Consider now (ii) and (iii). Again, let co e Ay , and let a/ be the unique component of co
 such that y = )Vo/. Let a be an arc of y such that 0a € /. Let be the midpoint of the arc,
 let xa be the center of the circle (of radius 8 + 2 r) which forms the arc, and let ua be the vector

 in the direction of 0a with magnitude 8/2 + r.

 Since xa € ^(û/)» no points of *I>(ct> ' WY) are in #2á+3r(*a). Since 'ua' = 8/2 + r, it
 follows that, for any x e co ' Wy , I^U) - ( ma - ua)' > 38/2 + 2 r. (See Figure 4.) So, for
 each x e co ' WY,

 3 8 (8 '
 |v|/(jc) - ( ma - uo)' > 'V(x) - (ma - ua)' -'uq-uq' > - + 2r - Í - + r Ja > 8 + 2r,

 where the last inequality follows by the choice of a. Therefore, if x e co ' WY then

 8
 '4>(x) - (ma - «o)l = 'x - (ma - wo)| > - + 2r.

 On the other hand, if x e co H WY then d(ty(x), y) > 8 + 2r, and so

 5
 '4>(x) - (ma - no) I = 'x - ma' > - + 2r.

 Combining the above statements, if x 6 co then '(ķ(x) - ( ma - uo)' > 8/2 + 2 r.
 Now note that, for any x e ^(o/), a disk #2r +<$(*) contributes to no more than six distinct

 circle arcs in y . In turn, each circle arc corresponds to a unique x e *l>(c«/) which is the center
 of the circle forming the arc. If two arc midpoints in y are at a distance less than 8 + 2r from
 one another, then the corresponding jc, y € 4>(a/) are at a distance less than 3 8 + 6 r, so that
 the (unique) points in co ' which 4/ maps to jc and y are at a distance less than 48 + 6r < 8 r
 from each other. By a simple area comparison, the number of points x e co contained in a disk
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 242 D. ARISTOFF

 of radius 8 r is bounded above by (9 r)2/r2 = 81. The preceding shows that, given any arc
 midpoint ma in y, the number of arc midpoints ^ ma in y such that 'ma - m¿ | < S + 2r is
 bounded above by J = 6- 81 = 486. So, with c = (! 2n(J + 1))"1«, there exists a subcollection

 {mi, m2, ...,mAf} C { ma : 0a 6 /}, M = fcJřl,

 of arc midpoints such that d(mi,mj) >8 + 2 r for all i ^ j e {1,2,..., M}. By taking
 Xi = mi - mo for / 6 { 1 , 2, . . . , A/}, the proof is completed.

 4. Estimates

 Using Lemma 1 , the ¡iz -probability of seeing a given contour y is shown to be exponentially
 small in the size, Ky of the contour.

 Lemma 2. There exists c > 0 such that the following holds . Let y be any contour of size K,

 and let Ay be the set of all co e Q such that y = y^^ for some finite component cor ofœ. Then ,
 for every Gibbs measure ßz,

 , < /iri2zVíď1
 ßz(Ay) , < J

 Proof Choose c > 0, 0, and x' , JC2, . . . , xm satisfying the conclusion of Lemma 1. Choose
 h so that )/cA/ļ, and let Ç € Q be arbitrary. For each A c Ay such that A e T , define

 A* = (<w0 C R2 : ö/ = <f>(co) U {yi, y2, . . . , yw), co € A, y¡ € B&/ 2(x¡)).

 (See Figure 5.) By conditions (ii) and (iii) of Lemma 1 ,AyCQ, and, since Ay € T , it is easy

 to see that Ay e f.
 By the definition of <f> and choice of h, if co € Ay and afi = <ļ>(ca) U {>'1 , >'2, . . . , jm) with

 y¡ € Bs/2(x¡), then co ' A¿+¡ = cofi ' A ň+i, where I = [5 + ri. Now let « = « + / + '2 rļ.
 If co € Ar and co* = <p(co) U {>>1 , y2, . . . , y m } with y¡ € Bs/ 2(x¡), then co e if and only

 if co * € . Let Ay, = Ay D . The preceding shows that A* n ¿ = Ay fl .
 Now, since each disk Bs/2(x¡) has (Lebesgue) area nS2 14, Lemma 1 implies that

 ^n,z(^y,n,ļ ) = ^"4"^ Lnjl(4>(Aytnj )) = ^ L„,z(/4yiM,f ).

 Figure 5: A disk Bs/iixi) centered at a midpoint of an arc of Yœ,co' - with x € 4* (<*>')•
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 Percolation of hard disks 243

 From the definitions, it is easy to see that GntZ¿(Ay) and Gn^(Ay) are positive. Thus,

 Q "'Z,f (A * ) " <

 "'Z,f (A * ) " G„.z,((A*) ~ L„tZ(Ay fi Í2„,() ~ L„,z(A*y,n,s) ~ V 4 /

 Also, by the choice of n, if co e Qn¿ then 1ay (co) = l¿y(üAJ(£'Art)), where 1ay : Œ -► [0, oo)
 is the (measurable) function 1 ay((*>) = 1 if co e Ay, and 1ay (co) = 0 otherwise. Since Ç was
 arbitrary,

 ßz(Ay) = Í /x(d£) i GfļiZ^ (do>) 1ay (co LI (Ç ' Art))

 = í /¿(d£) í GnfZ^(áco)lAy(co)
 JQ JQnj

 = Í Gn,z,ç(Ay)ft(dÇ)

 =mM-
 As ßz was an arbitrary Gibbs measure, the proof is complete.

 Next an upper bound for the number of contours enclosing the origin is obtained.

 Lemma 3. Let V k be the set of all contours y of size K such that 0 e Wy. Then

 where H is a constant depending only on r.

 Proof Note that each contour y is completely determined by its set of arcs, with each arc
 naturally corresponding to a unique point in (eZ)2, namely, the center of the circle of which the

 arc is part. Let y e r^. Since y is the (image of a) simple closed curve comprised of circle
 arcs, there is a sequence of circle arcs a', 02, . . such that a¡ and a¡+ 1 are adjacent for
 i = 1, 2, . . . , K - 1. Choose the corresponding sequence x' , *2, . . . , xr of points in (eZ)2.
 Then |x/+i - x¡ | <25 + 4 r < 5r for i = 1,2,...,# - 1 .

 By a simple area comparison, the number of points in (eZ)2 inside any disk Bs (x) is bounded
 above by

 7ī(s + e)2 2ns2
 6 2 e2

 if s > 3 s. As y encloses the origin, x' must be contained in a disk of radius (K + l)5r around 0.
 Therefore, there are at most 2n[(K + 1)5 r]2/s2 possibilities for x' . For i = 1 , 2, . . . , K - 1,
 */+1 must be contained in a disk of radius 5 r around jc, , so, given Jt/, there are no more than
 2n(5r)2/s2 possibilities for Xļ+'. Taking H = 5'/2Ťr r, the result follows.
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 244 D. ARISTOFF

 5. Main results

 Let co e Q. If the origin is not close to an infinite component of co , then it is either close to a

 finite component of co , or it is not close to any component of co. The probability of the former
 event can be handled by combining Lemma 2 with Lemma 3, while it is easy to control the
 probability of the latter event. This leads to the following result.

 Theorem 1. Let A|J¡f be the set of all co e Q such that d{ 0, 4* (a/)) < 8 + 2r for some
 infinite component co ' of co. Then A^f € !F and lim^oo ßz(A^f) = 1 uniformly in all Gibbs
 measures ļiz.

 Proof We define

 Aorig = {co e Q: d( 0, ^(ct/)) > 8 + 2r for all components co of co },

 Afin = {co e Q : d{ 0, ^(ct/)) < 8 + 2r for some finite component co ' of co },

 ¿cont = {&> € £2 : 0 € Wy for some contour y = Ya^'ì-

 Note that Aorig> Afin, and Acont can each be written as a countable union of finite intersections
 of sets of the form {co € Q : #(<*> fi ({*})) = €}, where x e ( eZ )2 and i € {0, 1}. Thus,
 ¿orig» ¿fin, ¿cont € !F .

 Let An be the set of all co e Q with the following property: there exist a positive integer k and

 x' , *2, . . . , Xk € ^(cd) such that |jci | < 8 + 2 r, 'x¡ - x/+i | < 2R for i = 1, 2, . . . , k - 1, and
 Xk ¿ An. Note that An can be written as a finite union of finite intersections of sets of the form

 {co e Q: #(co fi ļ>_1 ({*})) = 1}, where x e (eZ)2. Hence, An e F . Since AļļJf = fļ^=i ¿n
 it follows that AļļJf € y.

 Note that Í2 ' Aļļļ^ (Z Aorig ^ ¿fin and Afin CZ Acont, so

 ßz(& ' ¿inf) - ßz(A orig) + fin) < orig) H~ cont)-

 Choose c > 0 such that the conclusion of Lemma 2 holds, and choose H such that the conclusion

 of Lemma 3 holds. Then, for any Gibbs measure /¿z,

 ,, X /jrí2zVrcJr1 +
 *M->< ,, X E»r«(- /jrí2zVrcJr1 ) iE(- + - )(T) (- ) •

 This shows that /xz(ACOnt) 0 as z oo uniformly in fxz.
 Now, for any co e Aorig>d(0, ^(û>)) > <5+2r,andsod(0, co) > 8/2+2r. It follows that, for

 any co e Aorig and any x e Bs/ 2(0), co U x € Q. A simplified version of the proof of Lemma 2
 then implies that /xz(A0rig) < (tt82z/4)~1 for any Gibbs measure ßz. Thus, ßz(A0 ng) -► 0 as
 z - > oo uniformly in and the result follows.

 Below Theorem 1 is extended to continuous space.

 Theorem 2. Let L > 3 r. Let Am be the set of all co € Q such that 'JX€(Ü BL/i{x) has an infinite
 connected component, W, with d (0, W) < L/2. Then Altìf e T and 'imz^oo ļiz(Ainf) = 1
 uniformly in all Gibbs measures ßz.

 Proof It is standard to show that A¡nf € so this part of the proof is omitted. To see that
 limz_>oo iM¿inf) = 1, choose 8 e (0, r/2) and s € (0, 8/2) such that 3r + 28 + 2s < L, and
 define A^f as in Theorem 1. Then AļļJf C Ainf, and so ßz(Ainf) > f). The result now
 follows from Theorem 1.
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 The main result can now be proved.

 Theorem 3. Let L > 3 r. Let A be the set of all co e Q such that Ujcgco has an infinite
 connected component. Then A e !F, and for sufficiently large z, ßz(A) = 1 for all Gibbs
 measures ßz.

 Proof The proof of measurability is again omitted. It is clear that A is in the tail sub-a-
 algebra of !F , so fjiz(A) = 0 or 1 for all extremal Gibbs measures ¡iz (see Theorem 7.7 of [4,
 Chapter 7]). Let Ainf be defined as in Theorem 2. Since Ainf C A, Theorem 2 implies that
 limz_*oo ßz(A) = 1 uniformly in all Gibbs measures ßz. So, for sufficiently large z, ¡iz (A) = 1
 for all extremal Gibbs measures 1jlz. The result now follows from extremal decomposition of
 Gibbs measures (see Theorem 7.26 of [4, Chapter 7]).

 6. Conclusion

 Percolation of excluded volume has been proved for points in the plane distributed according
 to Gibbs measures with a pure hard-core interaction. This model, commonly called the hard
 disk model , is among the simplest continuum models of particles with pair interactions. The
 proof, which generalizes to 3 dimensions, relies on a Peierls-type argument; see [6]. (The
 generalization requires a slightly more complicated argument for choosing uo and estimating
 the number of contours of a given size.) A similar result is expected in a hard disk model with an

 added attraction which extends beyond the hard core, though this generalization is not pursued
 here. The hard disk model with attraction is believed to exhibit a gas/liquid phase transition,
 which has been heuristically connected to percolation of excluded volume; see [7], [13]. (There
 is no proof in the literature of a gas/liquid transition in a continuum model with pair interactions;

 see, however, [9].) To this author's knowledge, there is no previous proof of percolation of
 excluded volume for hard disks (or spheres) in the literature. (See [2] for a proof in a model
 with a complicated exclusion.) In general, very little is known (or proved) about the qualitative
 properties of the hard disk model at large activity. The result of this paper is of particular interest
 because of the known absence of long-range translational order in the model. It remains an
 open question whether percolation occurs for an arbitrarily small connection radius, that is, for
 a connection radius extending just beyond the exclusion radius; see [2].
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