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Abstract

Random arrangements of points in the plane, interacting only through a simple hard-
core exclusion, are considered. An intensity parameter controls the average density
of arrangements, in analogy with the Poisson point process. It is proved that, at high
intensity, an infinite connected cluster of excluded volume appears almost surely.
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1. Introduction

Consider a random arrangement of points in the plane. Suppose that each pair of points at a
distance less than L from one another are joined by an edge, and let G be the resulting graph.
An important question in percolation theory is: does G have an infinite connected component?

A key problem in answering this question is in defining what is meant by a random arrange-
ment of points. A standard model is the Poisson point process, in which the probability that a
(Borel) set A contains k points of the random arrangement is Poisson distributed with parameter
A|A|, where | - | is the Lebesgue measure and A is the intensity of the process. Events in disjoint
sets are independent; see [3]. Here A is the (average) density of arrangements of points. It
can be shown that if A is greater than some critical value A, then G has an infinite connected
component with probability 1; see [10]. (Of course, A depends on the connection distance L.)

The Poisson point process is closely related to the (grand canonical) Gibbs distribution of
statistical mechanics (with particle interaction set to 0 and momentum variables integrated out)
in the sense that they give nearly identical probabilistic descriptions of arrangements of points
in large finite subsets of the plane. The Gibbs distributions, however, also allow for interactions
among the points. Suppose that the points interact through a simple exclusion of radius 2r > 0.
(That is, each pair of points is separated by a distance of at least 2r.) Each arrangement of
points can then be imagined as a collection of hard-core (i.e. nonoverlapping) disks of radius r.

There is a Gibbs distribution on arrangements of points with exclusion radius 2r in finite
subsets of the plane which, like the Poisson process, gives equal probabilistic weight to every
arrangement of the same density. Furthermore, a probability measure can be defined on such
arrangements in the whole plane such that, in a certain sense, its restriction to finite subsets has
the Gibbs distribution. This probability measure, called an (infinite volume) Gibbs measure,
has been extensively studied (see, e.g. [5], [8], and [12]).

It is natural to ask whether G has an infinite connected component when the points in G
are sampled from a Gibbs measure with an exclusion of radius 2r. If r < L, one can argue
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236 D. ARISTOFF

that the exclusion is insignificant and that, by analogy with the Poisson process, there is some
critical activity, z¢, such that G almost surely has an infinite connected component for z > zc.
(See Section 7 of [2] for a sketch of a proof in this direction.) Here the activity z is a parameter
analogous to the intensity of the Poisson process.

If r and L are close, the qualitative relationship with the Poisson point process is less
clear, at least as it pertains to percolation. In particular, let L < 4r. Then the percolation
question is closely related to the excluded volume. (The excluded volume corresponding to
an arrangement of points is the set of all points which, due to the exclusion radius, cannot be
added to the arrangement.) If G has an infinite component for such L, then there is an infinite
connected region of excluded volume. The latter event has been associated with the gas/liquid
phase transition in equilibrium statistical mechanics; see [7] and [13]. Below it is proved that,
given L > 3r, with points distributed under a Gibbs measure with an exclusion of radius 2r, G
has an infinite connected component almost surely whenever the activity z is sufficiently large.

Little is known about qualitative properties of typical samples from a Gibbs measure (with
exclusion) when z is large; even simulations have been inconclusive, although a recent large-
scale study [1] may settle some questions. It is expected (but not proven) that when z is large,
typical arrangements exhibit long-range orientational order; see [1]. On the other hand, it
has been shown that there can be no long-range positional order at any z (see [11]; this is an
extension of the famous Mermin-Wagner theorem to the case of hard-core interactions). The
absence of long-range positional order makes the percolation question even more pertinent.

2. Notation, probability measure, and sketch of proof

Fix r > 0, and define
Q={wCR? |x—y| >2rforallx # y € w} C P(R?).

In particular, @ € . (Here £ (R?) is the set of subsets of R2.) Let 7" be the topology on £
generated by the subbasis of sets of the form {w € Q: #(wNU) = #(wN K) = m} for compact
sets K C R?, open sets U C K, and positive integers m. Here #¢ is the number of elements in
the set £. Let F be the o -algebra of Borel sets with respect to the topology 77; it is known that
F is generated by sets of the form {w € Q: #(w N B) = m} for bounded Borel sets B C R?
and nonnegative integers m; see [12]. Let A, = [—n, n]?> C R?, and, given A € ¥, define

An,N={(x|"'-9xN):{xl"-'va}eA’ {xlv'-'va}CAn}C(Rz)Ny
1 oo
Lan(A) =— [ dr-dey,  Lag(A) =) 2V Lan(A).
N Jann oo

For ¢ € Q and n € N, define
Qi ={weQ:wC Ay wUE\A,) € R}

It is easily seen that Q,; € F. For¢ € €,z € R, and n € N, define the grand canonical
Gibbs distribution G 5, with boundary condition { on A, by

Ln (AN )
Ln,z(Qn,;')

The Gibbs distribution G, ,,; is a probability measure on (2, ¥) with support in Qp ;.
A measure pu; on (2, F) is called a Gibbs measure if u,(Q) = 1 and, for all n € N and

Gn,z,(A) = forAe¥F.
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Percolation of hard disks 237

all measurable functions f: Q — [0, 00),
/ f@u (dw) = / uz(d¢) f Gzt (dw) f(wVU (& \ Ap)).
Q Q Q¢

It is well known that w, exists for every z. (For a proof of existence, see [12].) However, u,
may be nonunique. When y, is referred to below, it is assumed that u, is an arbitrary Gibbs
measure, unless otherwise specified.

Fors > 0, P, 0 C R?,and x € R?, define

By(x) ={y e R*: |x — y| <5},
d(P,Q) =inf{|p—q|: p€ P,q € 0},
P_x={p—x:p€P},

and call P infinite if, for every n, P is not a subset of A,.

Let L > 3r. The main result of this paper, Theorem 3, states that, for sufficiently large z,
Usew BL/2(x) has an infinite connected component p.-almost surely for all Gibbs mea-
sures (. As a preliminary step the following is shown in Theorem 2: let Ajy ¢ be the event
that |, ,, Br/2(x) has an infinite connected component, W, such that d(0, W) < L/2. Then
lim;_, oo 1z (Ajnf) = 1 uniformly in all Gibbs measures u,.

Here an outline of the proof of Theorem 2 is sketched. Write R = & + 3r/2 with § > 0,
with R chosen to be slightly smaller than L/2. Let W: R? — (£Z)? be a discretization of
space, with & much smaller than r and 8. Let w € €, and suppose that | J, ., BR(¥(x)) has a
finite connected component W. The boundary of W is comprised of a number of closed curves;
let y be the one which encloses a region W, containing all the others, and assume that y is
comprised of exactly K arcs. Let A, be the set of all € Q for which the curve y arises as
above. It can be shown that there is a vector ug € R? of magnitude approximately r and a map
¢: Ay — Qdefined by ¢(w) = ((w N Wy,) —up) U (w \ W,) with the following properties:
Lpz(¢(A)) = Ly ;(A) for all measurable A C A,, and there exist x1, x2,...,xy € R?, with
M = [cK1 and c a positive constant (depending only on § and r, and not on y), such that, for
alwe Ayandi # je{l,2,..., M},

)
d(x,~,¢(w))2§+2r and |x; —x;| > 8+ 2r.

Then, with A} = {$(@) U {y1, y2..... yu): @ € Ay, y; € Bspa(x),

Gn,z.C(Ay) _ (HSZZ)—M

Gnr(Ay) < =
Gt (AD) 4

provided n is large enough. It follows that . (A,) < (8% /4)‘M .

Let Ai‘ﬁf be the event that Uxew Br(W(x)) has an infinite connected component W such
that d(0, W) < r/2. Consider only those finite connected components W of | J rcw BR(W(x))
such that d(0, W) < r/2. A counting argument shows that the number of curves y with K arcs

corresponding to such W is bounded above by

((K‘l‘l)H)z E)Z(K_l)
€ (s ’

where H depends only on § and r. So the u,-probability that there is a finite connected
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238 D. ARISTOFF

component W of | J, ., BR(¥(x)) such that d(0, W) < r/2 is less than

X (K 4+ 1)H\2 [ H\2KD [ 7527\ [cK
(=) ()

K=1

This summation approaches 0 as z — o0o. A simpler version of the above arguments shows that
the p1.-probability that d(0, W) > r/2 for all connected components W of | J,.,, Br(¥(x))
also approaches 0 as z — oo. It follows that lim,_, o ; (Aiﬁf) = 1. The continuous space
corollary is the statement lim;_, o 1 (Ainf) = 1, which is deduced by an appropriate choice
of R; since all of the above estimates apply to arbitrary Gibbs measures p,, the convergence is

uniform in .

3. Discretization and contours

Throughout R, §, and ¢ are fixed with R = § +3r/2, 8 € (0, r/2), and ¢ € (0, §/2). Define
¥: RZ > (¢Z)? as follows. Forn, m € Z, if

(x,y) € .em—£z~:m+E X |e ss+e
Y 2’ 2 "ttty
then set

Y(x,y) = (em, en).

Note that |¥(x) — x| < ¢ for all x € R2. Furthermore, V¥ is Borel measurable in the sense that
W~1(P) is a Borel set for any P C (¢Z)?. (The dependence of W on ¢ will be suppressed.)

Letw € . The connected components of |, ., Br (¥ (x)) naturally partition w into subsets
o' C w; each ' consists exactly of all the points x € w such that W(x) belongs to a given
connected component of | J, ., BR(¥(x)). The subsets o’ will be called components of w.
A component o’ of w is said to be finite if o' C A, for some n. For each finite component o’ of
w € Q, consider the set W,, oy = (U, ¢,y Bs+2r(¥(x)). Since 8 +2r > R, W,, . is connected.
(It will also be assumed throughout that r, § € Q and that ¢ is transcendental. This assumption
implies that if two disks in W,, s intersect then they overlap.) Consider now the boundary
W, . of W, .. By the above, dW,, ,s is a union of (images of) simple closed curves, one
of which encloses a region containing all the others. Define y = ,,»» C R? to be the latter
curve; y will be called a contour of w. A contour y is (the image of) a simple closed curve
comprised of circle arcs. The total number of circle arcs in y is called the size of the contour;
see Figure 1. The region enclosed by y will be denoted by W,,. It is emphasized that a contour
Y = Yw.w is defined only when &' is a finite component of some w € Q.

Lemma 1. There exists ¢ > 0 such that the following holds. Let y be any contour of size
K > 0, and let A, be the (nonempty) set of all ® € Q such that y = Y, . for some finite
component ' of w. Then A, € . Choose n such thaty C Ap. Thereisamap ¢: Ay — Q
and x1,x2,...,XM€E R?, with M = [cK, such that

(i) Lp,;(A) = L, (¢ (A)) for all z and F -measurable A C Ay;
(i) |xi —xj|=8+2rforalli #je€{l,2,.... M}
(iii) d(x;, p(w)) = 8/2+2r foralli €{1,2,...,M}andallw € A,.

Proof. To seethat A, € ¥, note that A, can be written as a finite intersection of sets of the
form {w € Q: #(w N W~ ({x})) = £}, where x € (¢Z)* and £ € {0, 1}.
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Percolation of hard disks 239

FIGURE 2: A contour y,, . with the arc a. Here 6, is the outward normal angle with respect to the midpoint
of a and x € V(o).

For each circle arc a of y, let 8, € [0, 27) be the outward normal angle with respect to the
midpoint of the arc (see Figure 2). Choose 0 < a < §/(8 + 2r) so that « = 27/n for some
n € N. By the pigeonhole principle, there is a subinterval I = [v, v + &) C [0, 27) such that
[2m)~'a K of the angles 6, belong to I. Fix 6p € I, and let

ug = ((% + r) cos 6y, (g +r) sin 00)

be the vector in the direction of 6y with magnitude §/2 + r. Define ¢: P([R?) > P(R?) by
d(X)=((XNWy) —u) UX\W,).

It will be shown below that ¢(A4,) C Q.
Let w € A, be arbitrary, and let @’ be the unique component of w such that y = y,, ..
Assume that x € w \ W,,. Then d(¥(x), ¥(«')) > 28 + 3r, and so

d(w), U Bs+2r(‘l’()’))) >8+r.

yeo'
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240 D. ARISTOFF

YQQ‘
.'-. 6+2r
x] ' xo x2
26 +3r
X

FIGURE 3: Pictured are xj,x; € ¥V(o') C Wy, and x € W(wN W), but x ¢ ¥ (w'). For such x,
d(x,y) > /5rZ + 8rd + 382. This can be seen in the above picture, in which the distance from x to y
is minimized by placing x; and x as far apart as possible.

It follows that d(¥(x), ¥) > 6 +r,and sod(x, y) > 8/2 +r. Now assume that x € o N W,,.
If x €  thend(W(x),y) > 8 +2r,andsod(x,y) > 8/2+2r. If x ¢ &' then

V) ¢ | Bastar(W(y)
ye€w'
and a simple computation shows that d(¥(x), y) > N5r2 +8r6+38% > 5 +2r, and so
d(x,y) > 8/2 + 2r. (See Figure 3.)
Now let A C A, with A € ¥, and define
AP = (wNW,:we A}, A" ={o\W,:weA).

Let o™ € A" and 0 € A, By the preceding paragraph,
) . 8
d@™,y) > S+n d(@™, y) > 5o
Letx € w"and y € »®, and let z be any point on the intersection of y with the line segment Xy.
Then s 5
e —yl=lx—zl+ly—zl>o+2r+5+r=35+3r

2
Since |ug| = 8/2 + r, it follows that

F)
lp(x) —d(W)| = |(x —uo) — y| > 3 +2r.

By the preceding statements,
. . P
d(@™, o™ > & + 3r > 2r, d(@(@™), ¢(@*)) > 3 +2r > 2r.

In particular, this shows that ¢(A) C €, and so ¢(A,) C Q. Also, note that d(w™, y) >
8/2+2r and y C A, together imply that ¢(«™) = &'® — up C A,. Combining the above
statements gives )

LnN(A) = Ly N(A™) Ly n(A™)

= Ln,N(Airl - uo)L,,'N(A°“')
= Lo n(¢(A™) L, N ($(A™)
= Lo N($(A)).
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Percolation of hard disks 241

FIGURE 4: The midpoint m, of the arc a with corresponding normal vector u,. Here x, € ¥(o'). No
points in W(w \ W,,) can be inside the large circle. The magnitude of u, is r +8/2, and so the d-distance
between m, — u, and the large circle is 36/2 + 2r.

Since #(w N A,) = #(¢p(w) N Ap) for each w € A,, it follows that L, ;(A) = Lp (¢ (A)).
This proves (i).

Consider now (ii) and (iii). Again, let w € A,, and let @’ be the unique component of w
such that y = y,, .v. Let a be an arc of y such that 6, € I. Let m, be the midpoint of the arc,
let x, be the center of the circle (of radius & + 2r) which forms the arc, and let u, be the vector
in the direction of 6, with magnitude §/2 + r.

Since x, € ¥ ('), no points of W(w \ W,) are in Bys43,(xa). Since |uq| = 8/2 +r, it
follows that, for any x € w \ W,,, |W(x) — (mq — ua)| > 38/2 + 2r. (See Figure 4.) So, for
eachx e w\ W,

38 8
[W(x) — (mag — ug)| = |V (x) — (Mg — ug)| — |lug — uo| > > +2r — (5 +r)a > 8+72r,

where the last inequality follows by the choice of a. Therefore, if x € w \ W,, then

8
I$(x) = (ma — uo)| = Ix = (ma — uo)l > 5 +2r.

On the other hand, if x € @ N W, then d(¥(x), ¥) = § + 2r, and so

8
|§(x) — (mgq — uo)| = |x —myg| > 3 +2r.

Combining the above statements, if x € w then |@(x) — (mg — ug)| > 8/2 + 2r.

Now note that, for any x € ¥(«'), a disk B,,45(x) contributes to no more than six distinct
circle arcs in y. In turn, each circle arc corresponds to a unique x € W(w’) which is the center
of the circle forming the arc. If two arc midpoints in y are at a distance less than § + 2r from
one another, then the corresponding x, y € W(w') are at a distance less than 38 + 6r, so that
the (unique) points in @’ which ¥ maps to x and y are at a distance less than 48 + 6r < 8r
from each other. By a simple area comparison, the number of points x € w contained in a disk
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242 D. ARISTOFF

of radius 8 is bounded above by (9r)2/r? = 81. The preceding shows that, given any arc
midpoint m, in y, the number of arc midpoints mz 7# m, in y such that |m, —mg| < § +2r is
bounded above by J = 6-81 = 486. So, withc = 2n(J + 1))~ @, there exists a subcollection

{mlvm2,-~me}C{ma:0ael}y M=rCK]’

of arc midpoints such that d(m;, m;) > § + 2r foralli # j € {1,2,..., M}. By taking
xi =m; —up fori € {1,2,..., M}, the proof is completed.

4. Estimates

Using Lemma 1, the . -probability of seeing a given contour y is shown to be exponentially
small in the size, K, of the contour.

Lemma 2. There exists ¢ > 0 such that the following holds. Let y be any contour of size K,
andlet A, be the set of all w € Q such thaty =y, .y for some finite component ' of w. Then,
for every Gibbs measure p,,

nd2z\ K1
44 < - .
z( y) = ( ) )

Proof. Choose ¢ > 0, ¢, and xy, x2, ..., xp satisfying the conclusion of Lemma 1. Choose
i so that y C Aj;, and let £ € Q be arbitrary. For each A C A, such that A € F, define

A? = (0® CR*: 0® =9 (@)U {y1, 2, ..., yu), @ € A, yi € Bsja(xi)).

(See Figure 5.) By conditions (ii) and (iii) of Lemma 1, A$ C Q, and, since A, € F,itis easy
to see that A;’,’ EF.

By the definition of ¢ and choice of 7, if w € A, and o® = ¢(@) U {y1, 2, ..., yu} with
¥i € Bsj2(xi), thenw \ Ajy = @® \ Ajyy, where ! = [8 +r]. Now letn = i + 1+ [2r].
IfweA,and o® = o) Uy, y2,...,ym} withy; € Bs/2(x;), then w € Q¢ if and only

if o? € Q. Let Ay p ¢ = Ay N Q¢ The preceding shows that At,n,c = A',’,’ Ny ;.

Now, since each disk Bs/2(x;) has (Lebesgue) area w8 /4, Lemma 1 implies that

néz\M ndz\M
Ln. (A%, )= (—4—) Lz (@(Ayng)) = (T) Ln:(Aynp).

Bs,(x))
O

FIGURE 5: A disk Bs/2(x;) centered at a midpoint of an arc of y,, v — 40, with x € V(o).
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Percolation of hard disks 243

From the definitions, it is easy to see that G, ; ;(A,) and Gy ;¢ (Aﬁ) are positive. Thus,

Gnzi(Ay)  Lnz(AyNQug)  Luo(Ayng) (7162z)_M

Gnzt(AD)  Lno(AYNQue)  Lng(4%, ) 4

Gn,z,I;(Ay) =<

Also, by the choiceof n,if w € Qp ¢ then1y, () = 14, (@U($\Ap)), wherely, : Q — [0, 00)
is the (measurable) function 1 A () =1 ifweA, and1 A, (w) = 0 otherwise. Since { was
arbitrary,

he(Ay) = fﬂ w(dg) fg Grzp () 14, (@U (2 \ An))
n,g
=/ N(df)/ Gzt (dw) 14, (v)
Q Q¢

- fg Gt (A)u(d0)

7!'822 -M
[ () " o
o\ 4
_ n82z\ "M
=\ .
As ., was an arbitrary Gibbs measure, the proof is complete.

Next an upper bound for the number of contours enclosing the origin is obtained.

Lemma 3. Let 'k be the set of all contours y of size K such that 0 € W,,. Then

2 2(K-1)
T < (<K_+M) (E) ,
£ £

where H is a constant depending only on r.

Proof. Note that each contour y is completely determined by its set of arcs, with each arc
naturally corresponding to a unique point in (¢Z)2, namely, the center of the circle of which the
arc is part. Let y € I'k. Since y is the (image of a) simple closed curve comprised of circle
arcs, there is a sequence of circle arcs aj, az, . .., ag such that ¢; and a;4 are adjacent for
i=12,...,K — 1. Choose the corresponding sequence xi, x2, ..., xg of points in (e2)2.
Then |xj4+) — x;| <28 +4r <5rfori=1,2,...,K —1.

By a simple area comparison, the number of points in (¢Z)? inside any disk B; (x) is bounded
above by

(s + €)? - 2ms?
g2 g2
ifs > 3e. As y encloses the origin, x; must be contained in a disk of radius (K + 1)5r around 0.
Therefore, there are at most 2 [(K + 1)5r)? /€2 possibilities for x). Fori =1,2,..., K — 1,

Xi+1 must be contained in a disk of radius 5r around x;, so, given x;, there are no more than
2 (5r)? /&2 possibilities for x; . Taking H = 5+/27r, the result follows.
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244 D. ARISTOFF

5. Main results

Let w € Q. If the origin is not close to an infinite component of w, then it is either close to a
finite component of w, or it is not close to any component of w. The probability of the former
event can be handled by combining Lemma 2 with Lemma 3, while it is easy to control the
probability of the latter event. This leads to the following result.

Theorem 1. Let Ai"r’lf be the set of all w € Q such that d(0, ¥(w')) < 8 + 2r for some
infinite component ' of w. Then Aiff € F and lim,_, o uz(Ai"r’.f) = 1 uniformly in all Gibbs

measures [L;.

Proof. We define

Aorig = {w € Q: d(0, ¥ (') > & + 2r for all components &’ of w},
Afin = {w € Q: d(0, ¥ (') < 8 + 2r for some finite component o’ of w},
Acont = {w € Q: 0 € W, for some contour y = y,, o }.

Note that Aorig, Afin, and Acome can each be written as a countable union of finite intersections
of sets of the form {w € Q: #(w N ¥~ ({x})) = £}, where x € (¢Z)? and £ € {0, 1}. Thus,
Aorigs Afin, Acont € F.

Let A, be the setof all w € 2 with the following property: there exist a positive integer k and
X1,X2, ..., %Xk € W(w) such that |x;| <& +2r, |x; — xj+1| <2Rfori=1,2,...,k—1,and
xx € A,. Note that A, can be written as a finite union of finite intersections of sets of the form
{w € Q: #(wN W ({x})) = 1}, where x € (¢Z). Hence, A, € F. Since A}l = 72, An
it follows that A € F.

Note that 2 \ AY. c Aorig U Afin and Afin C Acont, SO

inf
U2\ ALY < 1z (Aorig) + 1o (Afin) < Bz(Aorig) + 2 (Acont)-

Choose ¢ > 0such that the conclusion of Lemma 2 holds, and choose H such that the conclusion
of Lemma 3 holds. Then, for any Gibbs measure u,

> —lek1 2 2AK-1) ;52\ —[cK]
né2z\7Te (K+DH\*(H 82z
z(Acont) < KE_I#FK (T) =< z (T) (-E-) (T) .

K=1

This shows that p;(Acont) = 0 as z — oo uniformly in u,.

Now, forany € Aorig, d(0, ¥(w)) > §+2r,andsod(0, w) > 8/2+2r. It follows that, for
any € Aorig and any x € B;2(0), 0Ux € Q. A simplified version of the proof of Lemma 2
then implies that 1, (Aerig) < (8%z/4)~! for any Gibbs measure p,. Thus, Mz (Aorig) = 0 as
z — oo uniformly in u,, and the result follows.

Below Theorem 1 is extended to continuous space.

Theorem 2. Let L > 3r. Let Ajns be the set of all w € Q2 suchthat\J,c,, BL/2(x) has aninfinite
connected component, W, with d(0, W) < L/2. Then Ains € F and lim;_, o0 7z (Ainf) = 1
uniformly in all Gibbs measures ;.

Proof. Itis standard to show that Ajss € F, so this part of the proof is omitted. To see that
lim;—; o0 iz (Ainf) = 1, choose & € (0, r/2) and € € (0, 8/2) such that 3r 4+ 28 + 2¢ < L, and
define Ai"l:f as in Theorem 1. Then Ai"’nf C Ainf, and so p;(Aijnf) = U, (Aiﬁf). The result now
follows from Theorem 1.
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The main result can now be proved.

Theorem 3. Let L > 3r. Let A be the set of all w € Q such that | J o BL/2(x) has an infinite
connected component. Then A € F, and for sufficiently large z, u,(A) = 1 for all Gibbs
measures [L;.

Proof. The proof of measurability is again omitted. It is clear that A is in the tail sub-o-
algebra of ¥, so u;(A) = 0 or 1 for all extremal Gibbs measures u, (see Theorem 7.7 of [4,
Chapter 7]). Let Ajnr be defined as in Theorem 2. Since Ajys C A, Theorem 2 implies that
lim,_, o pt;(A) = 1 uniformly in all Gibbs measures .. So, for sufficiently large z, u,(A) = 1
for all extremal Gibbs measures @,. The result now follows from extremal decomposition of
Gibbs measures (see Theorem 7.26 of [4, Chapter 7]).

6. Conclusion

Percolation of excluded volume has been proved for points in the plane distributed according
to Gibbs measures with a pure hard-core interaction. This model, commonly called the hard
disk model, is among the simplest continuum models of particles with pair interactions. The
proof, which generalizes to 3 dimensions, relies on a Peierls-type argument; see [6]. (The
generalization requires a slightly more complicated argument for choosing uo and estimating
the number of contours of a given size.) A similar result is expected in a hard disk model with an
added attraction which extends beyond the hard core, though this generalization is not pursued
here. The hard disk model with attraction is believed to exhibit a gas/liquid phase transition,
which has been heuristically connected to percolation of excluded volume; see [7], [13]. (There
is no proof in the literature of a gas/liquid transition in a continuum model with pair interactions;
see, however, [9].) To this author’s knowledge, there is no previous proof of percolation of
excluded volume for hard disks (or spheres) in the literature. (See [2] for a proof in a model
with a complicated exclusion.) In general, very little is known (or proved) about the qualitative
properties of the hard disk model at large activity. The result of this paper is of particular interest
because of the known absence of long-range translational order in the model. It remains an
open question whether percolation occurs for an arbitrarily small connection radius, that is, for
a connection radius extending just beyond the exclusion radius; see [2].
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